
IndeX Marks the Spot:
Cost-Predictive Server Hosting in Spot Markets

Supreeth Shastri and David Irwin
University of Massachusetts Amherst

Submission Type: Research

ABSTRACT
Cloud spot markets are gaining prominence as platforms that pro-
vide at-scale access to inexpensive computing for a wide range of
data-intensive and scientific applications. However, applications
that run on spot servers suffer from cost uncertainty since spot
prices are market-based. This inability to predict future spot prices
affects both customers and applications: former, because they can-
not plan their IT expenses in advance and latter, because the spot
price determines the availability and performance characteristics
of spot servers. While researchers have proposed techniques for
modeling and predicting prices of individual spot markets, their
utility have been limited given the proliferation of spot markets,
which now exceed 7600 on Amazon EC2.

In this work, we address the challenge of providing a reliable
cost-estimate to flexible applications hosted on cloud spot markets.
Our work is motivated by a simple but key market observation
that spot markets are reliably predictable at aggregate levels (e.g.,
a datacenter, or a server family) than at individual server level.
Towards quantifying this, we devise a novel index for cloud spot
markets. We analyze EC2’s global markets over 6-months to val-
idate our hypothesis and to identify additional market insights.
Building on these insights, we design an index-driven server host-
ing mechanism, and implement it on top of an open-source spot
server framework. Evaluations on EC2 spot markets, via prototyp-
ing and simulation, show that our system not only matches the
index-predicted cost-efficiency but does so while maintaining high
availability.

1 INTRODUCTION
“Prediction is very difficult, especially if
it’s about the future.”

Niels Bohr

In order to maintain the cloud’s illusion of at-scale computing
that is available on-demand, cloud service providers typically provi-
sion their capacity for expected peak loads. As a result, significant
portions (up to 40% [38]) of servers remain idle in cloud datacenters.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SoCC ’18, Oct 11–13, 2018, Carlsbad, CA, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

To recoup some of the capital and operational expenses of main-
taining this surplus capacity, which otherwise cannot be turned off,
providers have begun offering them as Transient servers. A promi-
nent example is Amazon’s Elastic Cloud Compute (EC2) that uses a
market-like mechanism to allow users to bid for its transient servers.
As users place bids, EC2 continually evaluates the supply-demand
dynamics of their idle capacity and determines the current clearing
price of the “spot” servers. If a user’s bid exceeds the spot price, they
are allocated the server and billed at the current spot price. How-
ever, if the spot price rises above the user’s bid level, EC2 reserves
the right to revoke the server with a two-minute warning [7].

Since spot servers are characterized by frequent and deliber-
ate revocations, EC2 offers them at significant discounts (typically
50-90%) compared to the regular servers that come with stronger
availability guarantees. As a result, this new contract type suddenly
provided access to inexpensive cloud computing for a wide swath
of applications that were hither to inhibited by the high costs of
on-demand servers. For example, the Fermilab Scientific Comput-
ing Division employed spot servers to dynamically scale up their
compute capacity by 4× during the discovery Higgs-Boson [8]. Sim-
ilarly, a group of machine learning and natural language processing
researchers recently set the record [9] for the largest ever high-
performance cluster on the cloud by using 1.1 million vCPUs on
spot servers. While, spot servers offer a significant potential for
cost savings, the magnitude of these savings is not guaranteed, is
based on future prices, and could ultimately be negative if prices
change unexpectedly.

Thus, any application that runs on spot markets suffers from
cost uncertainty. While variable-priced and market-based allocation
schemes are effective in determining the right price and in automat-
ically balancing the supply and demand, they result in the volatility
and unpredictability seen in the spot price traces. This is problem-
atic at two different levels. First, customers are typically used to
allocating fixed budgets for their IT expenses but spot markets
make it difficult to plan such purchases in advance. This concern
was significant enough to persuade some cloud providers to resort
to fixed-pricing models. For example, both Google’s Preemptible
VMs and Microsoft Azure’s Low-priority VMs are offered at ∼30%
of their equivalent on-demand prices. Second, it poses system level
challenges for applications. This is because, only by accurately pre-
dicting future spot prices, an application can select optimal servers
as well as minimize their revocations by bidding suitably.

While predicting future spot prices and selecting optimal spot
servers for a given application are important, they are challenging
for several reasons. First, EC2 spot markets are massive and com-
plex: it comprises of ∼7600 independently priced server “listings”

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

across 44 zones in 16 regions. By comparison, there are only around
6000 stocks listed across both the New York Stock Exchange and
NASDAQ.While a number of researchers [5, 12, 18, 26, 34, 37, 40, 43]
and startups [2, 22, 23] have proposed techniques for modeling and
predicting spot market prices, there is no guarantee a one-size-fits-
all model even exists as price characteristics are based on local
supply-demand conditions. Second, EC2 spot markets exhibit price
inversions and arbitrages such that a higher capacity server may be
priced lower than a lower capacity one, or identical servers across
zones may be priced differently based on the real-time supply-
demand conditions. It is impossible for static prediction methods
to account for such real-time inversions a priori. Finally, as appli-
cation’s resource usage changes over time, its choice of optimal
server is unlikely to remain same throughout its lifetime.

However, a confluence of recent technological advancements in
container virtualization [4, 6, 11, 39] and datacenter networking [3]
as well as per-second billing model [10] is enabling an alterna-
tive approach to managing spot market volatility. For example,
HotSpot [30] proposes to actively migrate applications to cope with
and benefit from diversity in application usage and volatility in mar-
ket behavior. While promising, a purely-reactive system that “hops”
underlying servers in response to real-time market changes does
not provide cost predictability. Additionally, greedy optimizations
at a given time may not necessarily lead to optimal deployments
overall, especially since the cost of migration is upfront while its
benefits are in the future.

In this paper, we make a case for a hybrid approach that com-
bines the predictive and reactive techniques in selecting optimal
servers for flexible cloud applications. In doing so, we observe that
investors face similar issues in financial markets when making
investment decisions. Since predicting individual stock prices is
challenging, investors base their decisions, in part, on the character-
istics of broader market indices, such as the Dow Jones Industrial
Average, S&P 500, and NASDAQ. While market indices provide a
high-level benchmark, investors employ active trading to adjust
their portfolio so that it continues to meet their investment tar-
gets despite the volatility of financial markets. We hypothesize
that similar dynamics hold good for cloud spot markets as well i.e.,
(i) making price predictions at aggregate market-level would be
more reliable than predicting at an individual server level, and (ii)
knowing the benchmark for cost-estimates a priori enables reac-
tive server management systems to achieve cost-efficiency without
sacrificing availability. In evaluating our hypothesis, we make the
following contributions:

Spot Market Analysis and Cloud Index. In contrast to the cur-
rent practice of historical price-based analysis of spot markets, we
take a first principles approach to observing the infrastructure-
level realities in public cloud datacenters. Based on this, we derive
two market properties as well as propose a novel cloud index to
benchmark groups of spot servers. Applying the index to EC2 spot
markets over a 6-month window, we highlight its salient features.

Cost-predictive ServerHosting. Extending concepts fromfinance
and economics, we design a new mechanism for cost-predictive
server hosting in variable-priced spot markets. Our mechanism,

index-tracking-by-server-hopping, employs server hopping as a tech-
nique to maintain the overall cost-efficiency at or below the target
index level.We analyze the properties of ourmechanism, and design
three server selection policies that illustrate the cost-availability
tradeoff enabled by this framework.

Implementation and Evaluation. We implement1 the cloud in-
dex, index-tracking mechanism, and server selection policies on the
open-source HotSpot framework. We evaluate our system against
two prior works: one that performs individual server predictions,
and another that does reactive server migrations. Our evaluations
on EC2 spot markets show that index-tracking policies are able to
reliably predict and maintain the target cost-efficiency for a variety
of flexible applications.

2 BACKGROUND AND MOTIVATION
Since the introduction of EC2 spot servers in late 2009, cloud spot
markets have been an active area of research and commercialization
with a goal to enable a wide range of applications to benefit from
these inexpensive compute resources. In this section, we address
the challenges of deploying flexible applications on spot servers,
and motivate our approach towards solving those.

2.1 Market and Application Characteristics
EC2’s global footprint is massive and complex: it operates in 16
worldwide regions each of which comprise of 2-6 availability zones,
and has announced plans to add 6 new regions with 17 additional
zones in the future [1]. EC2 spot markets, which Amazon uses to
sell the unused compute capacity in its datacenters, have the exact
same global footprint. Since EC2 sets a different dynamic spot price
for each type of server in each availability zone of each region,
the global spot market currently includes more than 7600 separate
server “listings”. Notwithstanding the global footprint, the spot
prices are hard to predict even for identical servers within a region.
For example, Figure 1 shows the price of r3.4xlarge Linux server
in four availability zones of US-East-1 region.

In this work, we address the challenge of cost-uncertainty ex-
perienced in variable-priced spot markets. Towards doing so, we
narrowly focus on two application categories: (i) Long-running
occasionally-interactive applications like data sinks for Internet-of-
Things (IoT) devices, BitTorrent file trackers, and cryptocurrency
miners, and (ii) Parallel synchronous applications like Message Pass-
ing Interface (MPI) that are characteristic of scientific and high-
performance computing. These applications are distinct from clas-
sical batch jobs as well as hyper-interactive web servers. Like batch
jobs, these applications offer flexibility for migrating and restarting
upon server failures but unlike batch jobs, their performance wors-
ens with decreasing availability. Similarly, unlike web servers, these
applications are able to tolerate occasional downtimes but just like
them, an increase in availability boosts their performance. Thus,
any cost prediction framework should include a consideration (and
tradeoff) for server availability.

1Available at https://umass-sustainablecomputinglab.github.io/cloudIndex

2

https://umass-sustainablecomputinglab.github.io/cloudIndex

 0

 2

 4

 6

 8

 10

Jan-1 Feb-1 Mar-1 Apr-1 May-1

S
p

o
t
P

ri
c
e

 (
c
e

n
ts

)
1a 1b

 0

 2

 4

 6

 8

 10

Jan-1 Feb-1 Mar-1 Apr-1 May-1

S
p

o
t
P

ri
c
e

 (
c
e

n
ts

)

1c 1d

Figure 1: Price of a representative Linux server (r3.4xlarge) across four availability zones of the US-East-1 region.

2.2 Market Properties from First Principles
To model and predict the behavior of EC2 spot markets, most of
the prior work analyzes the historical price traces from individual
spot markets and then picks a queuing model that best describes
the analyzed dataset. While intuitive, this approach faces several
challenges that limit its utility (as described in §1). Therefore, we
take a first principles approach to observing and understanding the
physical infrastructure-level realities in cloud datacenters.

2.2.1 On Diversity
In order to allow users to select the best fit server for their

application, cloud providers sell a large number of server types that
differ in their resource capabilities. However, these numerous server
types are carved out of a limited number of physical machines. For
example, EC2 offers 23 general-purpose server types (inT 2,M3,M4,
andM5 series) that are internally hosted on just 4 types of physical
machines2. While the total number of physical machines in a given
datacenter does not change drastically in short timeframes (like
hours, days or even weeks), the number of servers of each type is
likely to vary more frequently (as governed by the administrative
policies, supply-demand dynamics of different contract types etc.).
In other words, despite m4.larдe and m4.16xlarдe being sold in
separate spot markets, their availability, revocation characteristics
and in turn, their prices are not likely to be independent. Prior
works have largely ignored this physical reality in assuming that
price and revocation characteristics of different spot markets are
independent and identically distributed (likely because the spot
price traces under consideration did not explicitly reveal this).
Property 1: Spot markets originating from the same physical ma-
chine family are not free from mutual interference.

This has two implications to the users of idle capacity: First, it
is not prudent to model the behavior of spot markets individually
without regards to other markets that share the same underlying
physical machines. Second, spot markets that do not share a com-
mon underlyingmachine type could be expected to be free ofmutual
interference (barring datacenter-wide emergency or maintenance
events).

2.2.2 On Stability
Though individual market’s spot prices vary drastically (up to

10×), presumably based on the supply-demand dynamics of the
given server type, the overall idle capacity of datacenter paints a
different picture. In the first public release of its kind, Microsoft
2this inference directly follows from EC2’s listing of dedicated hosts, a contract type
where physical machines are rented instead of virtualized servers

researchers published [15, 21] detailed workload- and utilization
characteristics of Azure datacenters in 2017. While it was known a
priori [38] that significant portions of datacenter resources remain
idle, Azure traces shed light on the exact nature of this idleness:
the actual CPU utilization varies by the order of half the datacenter
capacity but the users are not dynamically scaling their allocated
servers to match the actual real-time utilization. Thus, Azure data-
centers do not experience large swings in server allocations either
at the customer level or at the datacenter level. The reported me-
dian volatility for server allocations is 6.3% hourly, 2.6% daily, 3.2%
weekly (at the datacenter level). These findings also corroborate
with observations from multiple Google datacenters [14], where
researchers proposed that large chunks of idle capacity experience
higher availability (>98.9%) over the window of 6 months.
Property 2: For public cloud providers, datacenter’s aggregate idle
capacity tends to be stable.

If compute was a fungible resource like oil and electricity, and
all of datacenter’s idle capacity was offered in a single marketplace
to be consumed by perfectly flexible applications, then property-2
implies (i) that there would be a single unified clearing price like
in the commodity spot markets, and (ii) that this clearing price
would be largely stable and predictable (via the efficient market
hypothesis [17] since the overall supply and demand are stable).
Thus, flexible applications operating in this hypothetical setup
would always pay the fair market value as well as have predictable
expenses. Obviously, the assumptions on application’s flexibility
and compute’s fungibility are not (yet) practical. However, in the
next section, we explore a first order approximation that helps us
benefit from this insight.

2.3 Market Indices
The market properties of §2.2 prompt us to analyze and model
spot markets at aggregate levels instead of individual ones. Specifi-
cally, two granularities of aggregation are natural choices: (i) all the
markets belonging to a given datacenter, and (ii) set of markets orig-
inating from a given server family (for e.g., all compute-optimized
servers or all general-purpose servers housed in the datacenter).
Towards collectively modeling a group of spot markets, we employ
market indices.

A market index, in finance and economics, is a statistical measure
of the value of a collection of items, and is useful in representing
their collective movement in a time-series. For example, the Con-
sumer Price Index (CPI) measures the changes in the price level of
a pre-determined market basket of consumer goods purchased by
typical households. Economists use the annual percentage change

3

in CPI as a measure of inflation, which in turn guides the mone-
tary policies on wages and taxes, interest rates, and cost of living
adjustments. Similarly, stock market indices like the Dow Jones
Industrial Average, the Standard and Poor’s 500 and the NASDAQ
Composite report the statistical measure of a prominent set of pub-
licly traded stocks, and are considered as broad indicators of the
country’s economy.

Thus, financial companies that engage in sophisticated market
strategies to manage their cost-risk-performance tradeoffs, rely
on these indices to evaluate their positions as well as to make in-
vestment decisions. We argue that with compute-time turning into
a core investment, technology-enabled companies would benefit
from an index that succinctly describes the behavior of cloud spot
markets. More importantly, when applied to spot markets, market
indices overcome several limitations of current approaches. First,
index composition is based on directly-observed market properties,
and not on indirect inferences from historical price traces. Second,
by revealing the fair market value of idle compute capacity in real-
time, the index provides a cost-benchmark for flexible applications.
Lastly, it yields an open framework that can be easily extended and
adapted to the needs of specific applications or market phenomena
that the user is trying to model.

3 CLOUD INDEX
“A bird’s eye view is way different from a
worm’s eye view, when in fact, they are
looking at the exact same thing.”

Unknown

The goal of the index is to succinctly describe the spot price char-
acteristics of a group spot markets to reveal insights and to enable
decision making. First, we describe the index construction method-
ology and then apply it on to EC2 spot markets to characterize its
salient features.

3.1 Methodology
Our index constructionmethodology comprises of four components:
characterization, composition, weighting, and consistency.

Characterization. Any compute server is characterized by the
quartet of CPU, memory, storage and network. However, cloud
servers are typically defined only by their CPU and memory since
storage and networking are decoupled and sold separately. For EC2
servers, the compute capacity varies between 1 and 349 ECUs (EC2’s
measure of CPU capacity), and memory capacity varies between
0.5 to 1952 GiB. Thus, in order to normalize these two independent
metrics, we compute their geometric mean for each server. Putting
it all together, P̂i (t) represents the normalized price of server i , with
Ci number of ECUs, Mi GiB of RAM and a market price of Pi at
time t .

P̂i (t) =
Pi (t)
√
Ci ·Mi

(1)

Composition. Composition determines the set of spot server mar-
kets that go into computing the index.While this is primarily driven
by the market properties of §2.2, it could be further trimmed to ac-
commodate application’s resource constraints or expanded to study

 0

 0.5

 1

 1.5

 2

 2.5

 3

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d
e
x
 l
e
v
e
l
(c

e
n
ts

/h
r)

Global spot markets

Global on-demand

Figure 2: Index level and spread for the global Linux spot
markets (2406 across all 14 regions).

broader market phenomena. For example, tuple (us-east-1,16GB)
describes the set of spot markets in all six datacenters of us-east-1
region that have a memory size of at least 16GB.

Weighting. Index weighting determines the relative impact that
each constituent item has on the final index value. The commonly
usedweightingmechanisms are (i) equal weighting, where each item
contributes equally, (ii) size-proportional weighting, where each item
contributes proportional to its size or capacity, and (iii) attribute
weighting, where each item is weighted as per the score it gets for
its attributes. In the real-world, DJIA uses equal weighting, S&P
500 uses market capitalization of stocks as their weight, and S&P
900 Growth uses growth prospect scores of stocks as their weight.
For our purposes, since EC2 does not publish any details about the
overall or available spot pool capacity, we simply employ equal
weighting.

I(t) =

N∑
i=1

P̂i (t)

N
(2)

Consistency. Consistency is the property of an index to absorb
market changes i.e., addition or removal of elements, or alteration
to the characteristics of elements, in such a way that the index val-
ues are comparable across those changes, and over time. Since we
employ normalization and equal weighting, it is trivial to incorpo-
rate introduction of new spot markets, discontinuation of existing
ones and even changes in resource capacities. However, in EC2
spot markets, spot servers may become temporarily unavailable
i.e., no matter how high the users bid, EC2 will not make any new
allocations for servers of that type. To communicate this situation,
EC2 has set a bidding cap of 10× the equivalent on-demand price
such that no user can outbid EC2, when it wishes to allocate certain
type of spot servers for other purposes. Thus, in order to keep our
indices consistent, we temporarily exclude all the 10×markets from
index computation for as long as their prices remain at the cap level.

In summary, the index value at a given time represents the average
price per unit of compute time (for the selected group of servers).

3.2 EC2 Spot Markets
The goal of applying the index on EC2 spot markets is twofold: first,
to validate the market properties presented in §2.2, and second, to
derive insights that can drive spot server selection. In the interest
of space, we analyze indices only for Linux markets and only at
select geographical locations.

4

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d
e
x
 l
e
v
e
l
(c

e
n
ts

/h
r) US-West-1a

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d
e
x
 l
e
v
e
l
(c

e
n
ts

/h
r) US-West-1b

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d
e
x
 l
e
v
e
l
(c

e
n
ts

/h
r) US-West-1c

Figure 3: Indices for the three US-West-1 datacenters

First, we observe the spot markets at the highest possible ag-
gregation i.e., global level. Figure 2 shows the index for all 2406
active Linux markets worldwide, with Y-axis plotting the index-
level and X-axis indicating the day of the year. The graph shows
that EC2’s spot market is remarkably stable, in aggregate, with
prices around 0.5 cents/hr, which equates to 80% discount over the
global on-demand average.

Second, we observe the aggregate markets at the datacenter
level with Figure 3 plotting the index-level for the three zones of
US-West-1. Contrasting these with Figure 1, we see that the char-
acteristic peaky behavior of individual spot markets does not exist
at the zone level. We also note that despite being located in the
same geographical region, price variations across different zones
are largely uncorrelated. This is because each zone is a separate
datacenter with its own usage patterns and administrative over-
heads such that unused server capacity at a given time need not
match across the datacenters.

Next, we decrease the granularity of aggregation to observe
groups of servers belonging to three distinct set of families: compute-
optimized, memory-optimized, and storage-optimized. Figure 4
shows these families for the US-West-1a zone. While there is in-
creased volatility compared to the zone-level index, the values are
still stable and predictable. Finally, we increase the levels of aggrega-
tion with Figure 5 demonstrating the corresponding regional index.
As expected, it shows a higher level of stability and predictability
compared to the zone-level indices, with price remaining at ∼16%
of the on-demand price level.

Insight (on predictability): Our analysis confirms that spot mar-
kets are remarkably stable and its prices are reliably predictable at
aggregate levels. We see this behavior consistently at the global, re-
gional, datacenter, and server-family levels.

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d
e
x
 l
e
v
e
l
(c

e
n
ts

/h
r) US-West-1a Compute-optimized

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d
e
x
 l
e
v
e
l
(c

e
n
ts

/h
r) US-West-1a Memory-optimized

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d
e
x
 l
e
v
e
l
(c

e
n
ts

/h
r) US-West-1a Storage-optimized

Figure 4: Indices of server families within a datacenter.

Given its generality, the index could be trivially extended to
analyze the EC2 on-demand offerings. While on-demand prices
are fixed within a region, they vary across regions as shown in
Figure 6, which plots the index-level across all 14 of the EC2 re-
gions. First off, we see that the price of compute varies substantially
across regions with SA-East-1 being 57% more expensive than
CA-Central-1 on average. Surprisingly, significant price differen-
tials exist for geographically nearby regions as well. For example,
index for US-East-1 in Virginia is ∼20% higher than US-East-2
in Ohio. While such disparities may be due to the regional eco-
nomic factors including price of energy, availability of technical
staff, and climate conditions, it does provide significant cost saving
opportunities for flexible applications (even without using spot
servers).

Since on-demand prices vary across regions, the magnitude of
cost savings from choosing particular regional spot markets also
varies widely. For example, while the index levels of EU-West-1 and
EU-West-2 (not shown here) hover around 0.45 and 0.3 cents/hour
respectively, indicating a 33% price differential, this is reflective
of the ∼30% price differential that exists in their on-demand price
levels. However, many price inversions do exist between on-demand
and spot markets. For example, though AP-Northeast-1 is slightly
more expensive than AP-Southeast-1 for on-demand servers, their
spot market averages are flipped, with AP-Northeast-1 offering
60% discount over AP-Southeast-1 region as shown in Figure 7.

Insight (on inversions): The market index allows users to readily
identify systematic price differentials, inversions and arbitrage op-
portunities both within the spot markets and across different types of
EC2 contracts.

5

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d
e
x
 l
e
v
e
l
(c

e
n
ts

/h
r) US-West-1

Figure 5: Index at the regional level

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

ca
-ce

n
t-1

u
s-e

a
st-2

e
u
-w

e
st-2

a
p
-so

u
th

-1
u
s-w

e
st-2

a
p
-n

e
-2

e
u
-ce

n
t-1

u
s-e

a
st-1

u
s-w

e
st-1

e
u
-w

e
st-1

a
p
-se

-2
a
p
-se

-1
a
p
-n

e
-1

sa
-e

a
st-1

In
d
e
x
 l
e
v
e
l
(c

e
n
ts

/h
r)

Worldwide On-demand Markets (Linux)

Figure 6: On-demand prices vary across regions.

4 SYSTEM DESIGN
Our system design goal is simple: run a given application on variable-
price spot servers such that it incurs a predictable expense. Given
that we have devised a market index that exhibits reliably pre-
dictable cost-efficiency for groups of spot markets, there is a trivial
solution: build a cluster composed of one spot server from each
of the constituent markets such that the overall cluster’s cost-
efficiency always matches that of the index. While trivial, this
solution is not practical for generic applications. So, we aim to real-
ize the performance of market indices without replicating its scale
i.e., even single-node application should achieve cost-predictability.
In this section, we design mechanisms and policies toward that
goal.

We approach this in two steps: first, determine a broad set of
candidate spot server markets that satisfy application’s resource
requirements. For this set, compute the cloud index to get the target
cost-efficiency. Second, from amongst the candidate markets, select
the best server (§4.3 outlines three policies for this selection) that
meets the target level. If changes in market conditions or applica-
tion characteristics render the selected server no longer meeting
the target, then transparently migrate the application to another
server that does (§4.2 proves why such a market always exists).
Our design draws inspiration from two techniques followed in the
financial markets: (i) index funds, which are financial instruments
constructed to track the performance of a reference market index,
and (ii) active trading, the strategy of actively trading stocks and
other instruments in the short-term in order to benefit from mar-
ket volatility. However, there are significant differences between
financial instruments and cloud servers such that these techniques
are not applicable as is. Remainder of this section addresses these
challenges.

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d
e
x
 l
e
v
e
l
(c

e
n
ts

/h
r) AP-Northeast-1

 0

 0.4

 0.8

 1.2

 1.6

 2

Mar-1 Apr-1 May-1 Jun-1 Jul-1 Aug-1 Sep-1

In
d
e
x
 l
e
v
e
l
(c

e
n
ts

/h
r) AP-Southeast-1

Figure 7: Indices showing price inversion across regions.

4.1 Index Tracking by Server Hopping
Fundamentals of Tracking. Index tracking is a rule-based in-
vestment mechanism with a goal to match the financial returns
from a portfolio to the performance of the market index it tracks.
Originally conceived to quell the notion that one cannot buy the
averages, index funds have grown to account for ∼20% of all the
managed funds in the U.S. Their efficacy is rooted in the Efficient
market hypothesis [17], which states that the stock prices fully
reflect all available information such that the benefits of acting
on information do not exceed the transaction costs. Simply, the
hypothesis implies that one cannot consistently beat the market by
predicting future prices of stocks. We have devised the cloud index
on the same principle that while it is hard to predict the future
prices of individual spot markets, it is possible to reliably predict
the behavior of certain groups of markets in aggregate.
Adapting to cloud servers. While our design retains the high-
level goal of matching (or improving on) an index’s performance,
we are constrained by having a portfolio of one server at a time. To
track the performance of the selected server i with respect to the
reference cloud index I, we define

Gain(t1, t2) =
t2∑

t=t1

(I(t) − P̂i (t)) ·
√
Ci ·Mi (3)

where Gain(t1, t2) represents the gain on the index between
times t1 and t2 that the server i was held, while Pi , Ci and Mi
denote the server’s price, CPU and memory capacity respectively.
In order to keep the gain positive (i.e., maintain a cost-efficiency at
or better than the index level), it may become necessary over time
to migrate to a better server.
Server Hopping. This derives from the techniques such as day
trading in financial markets, and loan refinancing in credit markets,
where the objective is to benefit from favorable market conditions
by actively trading one’s assets or obligations. Recent advances
in container virtualization, datacenter networking and per-second
billing models have made it possible (and even attractive) to fre-
quently migrate applications from one cloud server to another in
response to real-time dynamics. For example, Supercloud [33] live

6

migrates applications in response to geographically shifting work-
loads, and HotSpot [30] migrates applications to more cost-efficient
servers in spot markets. Server hopping algorithms are designed as
localized greedy optimizations: they incur upfront migration costs
in the hopes of future benefits.

Our primary goal in adapting server hopping is to prevent the
portfolio server from becoming cost inefficient with respect to the
index level. But every hop reduces the already accrued gain on the
index. To account for this, we consider the overheads of paying
for two servers for the duration of migration, while making no
progress on the application’s work. Thus, Loss (i, j) quantifies the
monetary loss of hopping from spot server i to j, with migration
taking time Tm .

Loss (i, j) = (Pi (t) + Pj (t)) ·Tm (4)

By tracking an application’s Gain and accounting for its Loss
over the course of its lifetime, we can determine its overall cost-
efficiency vis-a-vis the index. Next, we analyze the properties of
these mechanisms and the market conditions under which the
index-level cost-efficiency could be maintained.

4.2 Properties of Tracking-by-Hopping
There will always be a cost-efficient market to hop.

While this property is critical for the functionality of our al-
gorithm, it is also the easiest to establish. In the base case, when
the candidate set contains only one spot server market, the cost-
efficiency of that market is the same as that of the market index
(by definition 2). So, one can always hop back to the default spot
market. Next, when the candidate set contains multiple markets,
there needs to be at least one spot market whose cost-efficiency is
better than or equal to that of the index level (this follows from the
definition of market index, which is the average of the constituent
market’s efficiencies). Thus, there will always be a spot market
whose cost-efficiency is better than or equal to the index level.

However, the mere existence of an efficient-cost market at all
times does not imply that the overall cost-efficiency target would be
met. In fact, it is trivial to prove the opposite: consider a set markets
such that the cost-efficiency of one half of them are below the index-
level and the other half is above the index-level. Let us also say that
these markets are extremely volatile such that at every unit of time,
the markets in each of these halves swap i.e., those with better than
index efficiency become worse and vice-versa. Under such a volatile
setup, the application continually ends up hopping, leaving itself no
time to perform any actual work. Thus, for tracking-and-hopping
algorithm to be viable, the negative impact of hopping overhead
needs to be compensated by gains in index tracking.
Necessary and sufficient conditions.

It is trivial to establish the necessary and sufficient condition
for tracking-by-hopping to be effective: If the aggregate gain on
tracking exceeds the cumulative losses on hopping for the entire
duration of hosting, the mechanism would have met the goal.

However, we derive a sufficiency condition that helps make
localized greedy decisions instead of having to wait till the end of
the execution to verify meeting the target cost-efficiency. Figure 8

Time

C
os

t-
eff

ic
ie

nc
y

Migration time (Tm)

Work delayed due to migration

Pi

Pj

index-level (I)

Start of
migration

Figure 8: Illustrating the sufficiency condition to accommo-
date the overhead of migration.

illustrates an applicationmigrating from server i to j withmigration
taking time Tm (shown by the gray area). In order to completely
absorb the overhead of this migration, we need to account for not
only the Loss (i, j) but also the actual work that has gotten delayed
by migration (shown by the red area). Thus, if the cost-efficiencies
of two spot markets satisfy the following condition with respect
to the index-level, then hopping would not affect any previously
accrued Gain on the index. Note that this condition is sufficient but
not necessary.

P̂i (t) + (2 · P̂j (t)) ≤ I(t) (5)

On the efficacy of the mechanism.
Another advantage of tracking-by-hopping mechanism is that it

scales well with increased adaption. As more users seek to achieve
index-level cost-efficiency, we expect the market to become increas-
ingly stable since everyone’s target is the fair market value of the
idle cloud capacity. In turn, this should reduce the number of server
hopping required to maintain the desired cost-efficiency, thereby
leading to an increased application availability. This is in contrast
with the behavior induced by HotSpot, where every application is
actively trying to hop to the most cost-efficient server, which could
exacerbate the market volatility.

4.3 Server Selection Policies
Now that we have established the existence of one or more spot
markets that satisfy the target cost-efficiency levels at all times, we
present three policies that enable a tradeoff between lower cost and
higher availability while maintaining the target cost-efficiency.

Cost-centric Policy.The goal of this policy is tomaximize cost sav-
ings by aggressively migrating to the best-fit server that is also cost-
efficient. In order to determine this, we re-normalize the server’s
cost-efficiency from Eq-1 to take into account the actual resources
utilized at time t, namely Cutil andMutil .

P̆i (t) =
Pi (t)√

Cutil ·Mutil
(6)

Thus, cost-aware policy chooses the spot market that provides
the best P̆i value at the given time. Since availability is a not concern,
selections are triggered every time a better fit cost-efficient server
emerges due to any changes in spot market or application behavior.

7

Availability

1. Monitoring

Spot prices

Server’s
utilization

4. Hopping via Self-migration

detach

terminate

att
ach

migrate
ch

eck
point

2. Index Tracking

Index gain Hopping loss

3. Server Selection

Policies & Accounting

Cost

>?

I

Pr
ic

e

Figure 9: System architecture with HotSpot components boxed in gray and our extensions in red.

However, in order to maintain the target cost-efficiency, only those
migrations that satisfy Eq-5 are carried through.

Availability-aware Policy. The goal here is to maximize applica-
tion’s availability by selecting a stable server that also meets the
cost-efficiency targets. To identify such a server, this policy com-
putes the standard deviation of each market’s price with respect
to the index-level over a predefined window. Then, from amongst
the spot markets, whose average is below the index-level, it picks
the one with the least deviation. No further proactive selection
is triggered until the chosen server’s cost-efficiency crosses the
group’s index level.

Balanced Policy. To mind the gap between the two extremes, we
define a policy whose goal is to achieve a balance between higher
cost efficiency and higher availability. We infer that higher a spot
market’s price variability, higher the risk of needing to migrate
away. In order to balance this risk-reward tradeoff, we employ the
Sharpe ratio [29], a statistical measure commonly used in finance
to compute the risk-adjusted returns of an asset. We define balance
factor as a variant of the Sharpe ratio,

Si (t) =
Iд (t) − P̆i (t)

σi
(7)

where Iд is the index level of the group, P̆i is the server’s av-
erage cost-efficiency over a small window, and σi is the standard
deviation of the spot server’s cost-efficiency with respect to the
index level over the same window. While the numerator estimates
the server’s current “return” relative to the index-level, the denomi-
nator quantifies its expected “risk” of deviating from the return and
thus needing to migrate again. In this policy, hopping is triggered
only when the current server is no longer the one with highest
balance factor, thus minimizing migrations while not sacrificing on
cost-efficiency.

5 IMPLEMENTATION
Since we propose a middle ground between fully-predictive and
fully-reactive approaches to spot server management, we had sev-
eral options to build on the prior work. However, given the ease of
adding a predictive component (i.e., index tracking) to an already
functional reactive system (that does server hopping), we chose
HotSpot [30] as our base framework.

5.1 HotSpot Overview
HotSpot introduces a self-migrating server abstraction for con-
tainerized applications. It works by (i) continuously monitoring
the spot market prices and application’s resource utilization, (ii)
periodically performing cost-benefit analysis to determine whether
to stay or migrate to a cheaper server, and finally (iii) migrating the
containerized application to the newly chosen server and shutting
down the current one. Since this logic is embedded inside the Ama-
zon Machine Image (AMI), any EC2 server booted with it becomes a
self-migrating server (i.e., runs this control loop throughout its life-
cycle). Thus, HotSpot is easily adaptable: it requires no application
modifications nor any external infrastructure support.

Since we reuse the HotSpot framework, we also inherit some of
its restrictions. First, due to LXC integration, we can only support
stop-and-copy migration. Second, hopping semantics force applica-
tions to use remote storage and virtual network i.e., Elastic Block
Storage (EBS) and Elastic Network Interface (ENI) respectively.
Finally, HotSpot is architecturally decentralized i.e., each server
manages itself without explicit coordination with others. Thus, effi-
cient coordinated deployments in multi-node configurations may
need a centralized orchestrator (we address this in §6.2).

5.2 Extending HotSpot
HotSpot is implemented in Python with additional integrations
with EC2’s Boto3 library, LXC bindings and administrative Shell
scripts. We retain the monitoring and hopping components but re-
place the cost-benefit analysis logic with index-tracking and server
selection modules as depicted in Figure 9. We implement our ex-
tensions in ∼850 lines of Python.

First, we build a standalone cost estimator utility that takes
in application’s resource constraints, then computes the market
index-level for the selected availability zone, and finally predicts
the overall cost to be incurred. This enables users to know their
expenses before starting the workload. A library version of this
utility is integrated in the index-tracking module, which in turn
polls the monitoring engine once every five minutes to update
the gain on index-tracking. This also triggers the server selection
policy, which iterates through all the applicable spot markets to
determine if server hopping is required. For the most populous
zone (US-East-1a with 106 spot markets), this whole operation
sequence of monitoring, tracking and server selection takes an av-
erage of ∼2 seconds. We configure the migration module for direct
memory-to-memory transfer as it maximizes application’s avail-
ability. We find that the migration latencies observed in HotSpot

8

Time

Pr
ic

e
($

/h
r) m4.2xlarge (8 vCPU, 32GB RAM)

c4.2xlarge (8 vCPU, 16GB RAM)
r4.xlarge (4 vCPU, 32GB RAM)

m4.large (2 vCPU, 8GB RAM)

8.5

4.5

6.5

 0

 10

 20

 30

 40

 50

 60

C
ost-centric

Balanced

Avail-aw
are

C
o

s
t

(%
 i
n

d
e

x
-l
e

v
e

l)

 90

 92

 94

 96

 98

 100

C
ost-centric

Balanced

Avail-aw
are

A
v
a

ila
b

ili
ty

 (
%

)

Figure 10: Spot market setup (left), and the performance tradeoffs (right) at the baseline configuration.

Time

app2

app1

Resource Utilization Phases

app3

 0

 10

 20

 30

 40

 50

 60

app1 app2 app3

C
o

s
t

(%
 i
n

d
e

x
-l
e

v
e

l)

Cost-centric Balanced

 90

 92

 94

 96

 98

 100

app1 app2 app3

A
v
a

ila
b

ili
ty

 (
%

)

8
9

.5

Availability-aware

Figure 11: Performance of policies when application’s resource utilization varies.

are still current: migration of up to 32GB RAM takes ∼30 seconds
(as it is bottlenecked by the EBS/ENI transfer happening in parallel),
and the latency for larger memory sizes (up to 128 GB) increases
linearly at the rate of ∼1 second per GB.

6 EVALUATION
We hypothesized that we could achieve cost-predictive server host-
ing by modeling the spot markets in aggregate via a cloud index and
then by tracking it via server hopping. Additionally, we presented
server selection policies that enable a tradeoff between higher avail-
ability vs. lower cost, while maintaining the index predicted cost-
efficiency. Our evaluation investigates the validity of these claims
by setting up experiments that answer two key questions: (i) How
do server selection policies perform under different market and
application conditions? (ii) How effective is index-tracking on EC2
spot markets, and how does it fare against fully-predictive and
fully-reactive approaches? We quantify the former via prototype
experiments, and the latter via simulations of jobs from Google
clusters.

6.1 Prototype Experiments
In order to evaluate the server selection policies (described in 4.3),
we have to be able to control application’s and spot market’s char-
acteristics. Since the prototype is intended to run real workloads on
EC2 instances with real-time prices, it limits our ability to control
key parameters. Thus, in the following set of experiments, while
our prototype is deployed and run on the EC2 platform, we stub
out certain EC2 API calls (for e.g., real-time spot price querying).
We also use an emulated job to better control application’s CPU
and memory usage. Below, we describe these setup, establish a
baseline performance and then quantify the effect of varying key
parameters.

Application. To predictably control the application behavior, we
emulate the job using lookbusy [13]. Our job runs for an hour on
the reference server m4.2xlarge and has two distinct resource uti-
lization phases. In the first phase (lasting 30 minutes), it consumes
4 vCPUs and 16 GB of memory while in the second phase (the next
30 minutes), it consumes 2 vCPUs and 8 GB of memory.

Spot Markets. To ensure identical market conditions over differ-
ent runs, we generate synthetic spot price traces for four spot mar-
kets: m4.large, m4.2xlarge, c4.2xlarge and r4.xlarge. These
are chosen as their vCPU varies between 2-8 and memory capacity
between 8-32, which cover the entire spectrum of our application’s
resource utilization. We model their prices as follows: m4.large
has an average price of 4.5 cents per hour and a standard deviation
of 0.5, m4.2xlarge has the same standard deviation but an average
price of 8.5 center per hour, while c4.2xlarge and r4.xlarge have
identical average price of 6.5, the former has a standard deviation
of 1, while the latter has 1.1. Figure 10(left) gives an illustrative
representation for these markets. For our experiments, the instan-
taneous spot price is computed randomly such that their average
and standard deviation characteristics hold good. We use the same
per-second billing model that EC2 operates on.

Baseline Result. Figure 10(right) shows both the cost incurred and
availability achieved by the three different policies. We normalize
the cost to that of a reference server running at the index-level
cost-efficiency. We observe that all three policies perform better
than the index predicted levels. Also, expectedly the cost-centric
policy realized the cheapest run, and the availability-aware policy
attained the highest availability. The balanced policy managed to be
within 12% of the lowest cost, and 1.7% of the highest availability.

Changing Application Behavior. Next, we modify the baseline
configuration of the application to exhibit more diversity in its
resource consumption as depicted in Figure 11 (left). The resource

9

variations are such that the application could be executed on at
least one of the four target spot markets at all loads. Figure 11
(right) shows the results of hosting the three different application
configuration. First thing to notice is that the performance of the
availability-aware policy does not change at all, which is not unex-
pected because this policy optimizes for stability and not savings.
Next, we see that both balanced and cost-centric policies incur in-
creasing overheads as the application’s utilization gets bursty. As
the markets have remained the same, the cost-efficiency gains of
moving to a better fit server gets overtaken by the migration over-
heads. However, since the balanced policy does not react to changes
as quickly as the cost-centric policy, its losses are less pronounced.

Changing Market Behavior. Finally, we vary the baseline mar-
ket conditions to see its impact on the policies. We achieve this by
changing the standard deviation. Figure 12 then shows how the poli-
cies perform under more volatile conditions. We plot the increase
in market volatility (compared to the baseline) along the X-axis.
The first graph shows that both cost-centric and balanced policies
slightly improve their cost efficiencies when the market volatility
increases. Interestingly, the availability policy, when forced to mi-
grate under more volatile conditions, has managed to reduce its cost
as a side effect of repeated migrations. However, the availability
graph shows that all policies suffer, when markets are more volatile.
Our experiments in §6.2 give a better sense of the current state of
the EC2 markets as they use real spot price traces.

Summary. The balanced policy using the Sharpe ratio consistently
achieves better cost-efficiency tradeoffs than the extreme policies, un-
der varying market conditions and application’s resource utilization.

6.2 Simulation Experiments
The goal of our simulation experiments is to quantify the efficacy
of different spot server management techniques under realistic
spot market conditions. We evaluate three approaches for two
categories of applications using job traces from Google cluster and
price traces from EC2. Below, we describe each of these as well as
our experimental findings.

Spot Markets. For these set of experiments, we use EC2’s spot
price traces from the US-West-1 region between 1-MAR-2017 and
31-AUG-2017. We run three separate trials, one for each of its three
zones (1a, 1b, 1c), whose index levels are depicted in Figure 3.While
each zone consists of 79 Linux markets, every jobs considers only
the set of markets that meet its minimum resource requirements.

Server Management Techniques. The three approaches to spot
server management that we evaluate are: (i) Fully-predictive, (ii)
Fully-reactive, and (iii) Hybrid. A fully-predictive system employs
static selection such that once a server is selected from amongst
the available pool of spot servers, the application is continually
hosted on it as long as the server is not revoked. If that happens, the
selection process is repeated and the application is restarted on the
new server. Amazon’s Spotfleet tool is an example of this style.
In contrast, the fully-reactive approach continually looks for better
servers and as soon as one is found, it migrates the application.
HotSpot belongs to this category. Finally, the hybrid approach uses
index-tracking as the predictive component and server hopping

 0

 10

 20

 30

 40

 50

 60

0% 50% 100%

C
o

s
t

(%
 i
n

d
e

x
-l
e

v
e

l)

Cost-centric Balanced

 90

 92

 94

 96

 98

 100

0% 50% 100%

A
v
a

ila
b

ili
ty

 (
%

)

8
7

.6

Availability-aware

Figure 12: Policies under changing market volatility.

as the reactive component. We configure its server selection to be
driven by the balanced policy.

6.2.1 Long-running Occasionally-interactive Applications

This emerging application category includes data sink servers
for IoT sensors, cryptocurrency miners and peer-to-peer file track-
ers. While they are flexible in tolerating moderate downtimes and
application restarts, they typically do not benefit from the classical
fault-tolerance mechanisms like checkpointing or replication. Thus,
we run the application without any fault-tolerance, and investigate
how the three spot server management approaches manage its host-
ing. To do so, we simulate running the application for a duration of
6 months. The simulator is seeded with the following characteriza-
tion of the application’s behavior. First, the application requires a
minimum of 2 vCPUs and 10GB of memory. While its performance
degrades below these levels, it does not scale up with additional
resources. Second, the application could be transparently migrated
with a stop-and-copy migration, and that it would incur a down-
time of 30 seconds given its resource levels. Finally, an application
restart following a server revocation would incur a downtime of 90
seconds (for acquiring a new spot server, and setting up EBS/ENI).

Figure 13a shows both the overall cost and availability of running
the application over the 6-month window. To establish a baseline,
we simulate running the application on the cheapest on-demand
server that meets the resource constraints, which happens to be
r4.large. Then, we normalize the running cost of all techniques
to this level. First, we see that all three approaches are substan-
tially cheaper than on-demand hosting. But the reactive and hybrid
schemes not only manage to meet the index-level cost-efficiency but
also achieve∼50% cost reduction over the predictive approach. Next,
in terms of availability, the predictive and hybrid schemes achieve
three nines of availability whereas the reactive scheme manages
only 95%. Under the hood, we observe that the predictive scheme
experienced an average of 4.33 revocations, the reactive scheme
migrated 4208 times with no revocations, and the hybrid scheme
suffered 1 revocation and chose to perform 24.66 migrations.

6.2.2 Parallel Synchronous Applications

A staple of high-performance scientific computing, these appli-
cations are deployed in multi-server configurations with all the
servers working in lock step, often involving significant data ex-
changes and synchronizations. Thus, a downtime for one server
negatively impacts all other servers interacting with it. In this
experiment, we evaluate how decentralized server management
approaches cope with this parallel setup. To do so, we simulate run-
ning 1000 randomly selected jobs from theGoogle cluster traces [25].

10

 0

 5

 10

 15

 20

 25

 30

Predictive

H
ybrid

R
eactive

C
o

s
t

(%
 o

n
-d

e
m

a
n

d
)

index-level

 90

 92

 94

 96

 98

 100

Predictive

H
ybrid

R
eactive

A
v
a

ila
b

ili
ty

 (
%

)

(a) Long-running application

 0

 5

 10

 15

 20

 25

 30

Predictive

H
ybrid

R
eactive

C
o

s
t

(%
 o

n
-d

e
m

a
n

d
)

 90

 92

 94

 96

 98

 100

Predictive

H
ybrid

R
eactive

A
v
a

ila
b

ili
ty

 (
%

)

(b) Parallel applications

Figure 13: Comparing the fully-predictive, fully-reactive and hybrid server hosting systems on EC2 spot markets.

Internally, each of these jobs comprise of worker tasks (ranging
from ∼10-500) that are run on separate servers but coordinate dur-
ing their execution. Google traces report the CPU and memory
consumption of every task at the granularity of 300 seconds. The
run length of jobs vary between ∼10-720 minutes. We execute each
job, at the time it arrives by choosing the best spot servers for each
of its tasks as per the hosting technique. Within the simulator, we
make three operational assumptions: (i) if a task gets revoked, the
whole job is restarted, (ii) when a task is migrated to a new server,
all other tasks of that job pause until the migration is fully com-
pleted, and (iii) we consider the job as completed only when all of
its tasks are finished.

Figure 13b then shows the cost and availability of running these
jobs. For the cost graph, we normalize the Y-axis to that of running
all the jobs on the cheapest matching on-demand servers. We see
that the hybrid scheme not only meets the index predicted cost lev-
els but also comes out 30-40% cheaper than the other two schemes.
The reactive scheme suffers from asynchronous migrations, where
a small number of hopping nodes hold a large number of com-
municating nodes frozen for the duration of migration, thereby
increasing the overall cost. This problem was not as pronounced
in the hybrid approach since its policy naturally encouraged syn-
chronous (and fewer) migrations. On the other hand, the predictive
scheme improved its performance (compared to prior experiment)
as it benefited from having a large number short jobs that in turn
reduced the probability of revocation and also increased its ability
to find better matched servers repeatedly. Availability paints a sim-
ilar picture as before: predictive achieved four 9s, hybrid managed
three 9s, and reactive mustered ∼96%.

Summary. For long-running as well as parallel applications, the
hybrid approach meets the index predicted cost-efficiency. Not only
that it also achieves the best combination of lower cost and higher
availability compared to other approaches.

7 RELATEDWORK
To the best of our knowledge, this is the first work to apply mar-
ket indices to analyze cloud spot markets, as well as propose a
mechanism for cost-predictive server hosting on variable-price
spot markets. While a preliminary version of this work appeared in
[31], the current treatment differs in three significant ways: (i) we
validate our intuition for using cloud indices via infrastructure-level

observations in public cloud datacenters, (ii) we have a more spe-
cific goal (on cost predictability) and do not consider global trading,
and (iii) we present a rigorous treatment of the index composi-
tion, tracking-by-hopping mechanism, and server selection policies.
Below, we describe the related work in detail.
Spot market predictions. The first category of related work com-
prises of modeling spot markets with a goal to predict its future
behavior. The earliest work came from Ben-Yehuda et.al. [12] in
2013, and has been followed since then by a large body of work
including [5, 18, 37, 40, 41]. These work mainly focus on predict-
ing the behavior of individual server markets, whereas our work
proposes to analyze markets in aggregate. In conjunction with
prediction schemes, researchers have also developed bidding strate-
gies [26, 34, 43] for different types of applications. However, bidding
policies are orthogonal to our work since our system migrates away
from risky (i.e., cost-inefficient) markets naturally.
Financial concepts applied to spot markets. The next category
is the application of financial and economic concepts to cloud spot
markets. Prior efforts include creating an optionsmarket [36], adapt-
ing the modern portfolio theory [27], implementing active trad-
ing [30], proposing asset pricing [32], and composing derivative
cloud markets [28, 35, 42]. However, none of these share our goal
of realizing cost-predictive spot server hosting.
Market indices for non-cloud environments. Financial mar-
ket indices have existed for a long time with the Standard and
Poor’s index dating back to 1923. Our work extends and adapts
the index construction methodology of several indices including
the Consumer Price Index [24], the S&P and Dow Jones [20]. Re-
searchers have applied market indices to other spot markets like
electricity [16]. However, the unique characteristics of compute-
time namely, its state and the use-it-or-lose-it property make its
application distinct from the prior indices.
System design aspects. Finally, our work derives several system
design elements from HotSpot [30], SmartSpot [19], and Super-
cloud [33]. These include mechanisms and policies for container-
and nested VM migration, automated server hopping, and decen-
tralized server lifecycle management. However, the goals of these
projects are distinct from ours. Both SmartSpot and Supercloud
employ migration to lower access latency and improve resiliency
but do not focus on spot market dynamics. While HotSpot uses

11

 0

 1

 2

 3

 4

 5

 6

 7

 8

8/2006

8/2008

8/2010

8/2012

8/2014

8/2016

In
d
e
x
 l
e
v
e
l
(c

e
n
ts

/h
r) On-demand

Reserved-1Y
Reserved-3Y

Figure 14: Index-levels of on-demand and reserved servers
in the US-East-1 region, since EC2’s inception.

automated server hopping to reduce server hosting costs, it makes
no predictions on the resulting cost-efficiency.

8 DISCUSSION AND CONCLUSION
Our work stems from the most prevalent deployment concern of
the spot markets namely cost uncertainty, and how the diversity
and span of EC2 spot markets have exacerbated this concern. We
observe infrastructure-level realities from public cloud datacenters,
and devise a novel index for cloud spot markets. The insights from
these indices enable us to design a cost-predictive server hosting
framework. We implement and evaluate it on EC2 spot markets.
Benchmarking. Though this work primarily uses cloud indices
for cost-predictive server hosting, we believe in its broad applica-
bility beyond this purpose. For example, by succinctly representing
the aggregate behavior of spot markets, cloud indices establish a
benchmark for comparing the performance of spot server manage-
ment techniques. This is especially important as researchers and
startups are designing sophisticated strategies such as portfolio
diversification and derivative clouds, whose performances need to
be vetted against a reference benchmark.
Beyond SpotMarkets. In recent years, cloud computing platforms
are rapidly evolving the IaaS offerings to cater to the diverse needs
of cloud customers. While spot markets exhibit price and risk dy-
namism in short timescales of seconds and hours, other contract
types like on-demand and reserved servers do so in terms of months
and years. Cloud indices are a natural way to track this long-term
evolution. For example, Figure 14 concisely represents the price
trajectory of on-demand and reserved servers in the US-East-1 re-
gion over the last decade. We posit that insights from cloud indices
can drive informed investment decisions for cloud users.

REFERENCES
[1] 2017. AWS Global Infrastructure. https://aws.amazon.com/about-aws/global-

infrastructure/. (Accessed October 2017).
[2] 2017. Cmpute Inc. http://www.cmpute.io. (Accessed October 2017).
[3] 2017. Improved Networking Performance for Amazon EC2 In-

stances. https://aws.amazon.com/about-aws/whats-new/2017/09/
announcing-improved-networking-performance-for-amazon-ec2-instances/.
(Accessed October 2017).

[4] 2017. Linux Containers. http://linuxcontainers.org. (Accessed October 2017).
[5] Sara Arevalos, Fabio Lopez-Pires, and Benjamin Baran. 2016. A Comparative

Evaluation of Algorithms for Auction-based Cloud Pricing Prediction. In IC2E.
[6] Gaurav Banga, Peter Druschel, and Jeffrey Mogul. 1999. Resource Containers: A

New Facility for Resource Management in Server Systems. In OSDI.
[7] Jeff Barr. 2015. EC2 Spot Instance Termination Notices. https://aws.amazon.com/

blogs/aws/new-ec2-spot-instance-termination-notices/. (January 2015).
[8] Jeff Barr. 2016. Experiment that Discovered the Higgs Boson

Uses AWS to Probe Nature. https://aws.amazon.com/blogs/aws/
experiment-that-discovered-the-higgs-boson-uses-aws-to-probe-nature/.
(March 2016).

[9] Jeff Barr. 2017. Natural Language Processing at Clemson University - 1.1 Million
vCPUs and EC2 Spot Instances. https://aws.amazon.com/blogs/aws/natural-
language-processing-at-clemson-university-1-1-million-vcpus-ec2-spot-
instances/. (September 2017).

[10] Jeff Barr. 2017. Per-Second Billing for EC2 Instances. https://aws.amazon.com/
blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/. (2017).

[11] Muli Ben-Yehuda, Michael Day, Zvi Dubitzky, Michael Factor, Nadav Har’El, Abel
Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. 2010. The
Turtles Project: Design and Implementation of Nested Virtualization. In OSDI.

[12] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir.
2013. Deconstructing Amazon EC2 Spot Instance Pricing. ACM TEAC 1, 3 (2013).

[13] Devin Carraway. 2017. Lookbusy - A Synthetic Load Generator.
http://www.devin.com/lookbusy/. (Accessed October 2017).

[14] Marcus Carvalho, Walfredo Cirne, Francisco Brasileiro, and John Wilkes. 2014.
Long-term SLOs for Reclaimed Cloud Computing Resources. In SoCC.

[15] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Marcus Fontoura,
and Ricardo Bianchini. 2017. Resource Central: Understanding and Predicting
Workloads for Improved Resource Management in Large Cloud Platforms. In
SOSP.

[16] Paolo Falbo, Marco Fattore, and Silvana Stefani. 2010. A New Index for Electricity
Spot Markets. Energy Policy 38, 6 (2010).

[17] Eugene Fama. 1970. Efficient Capital Markets: A Review of Theory and Empirical
Work. The Journal of Finance 25, 2 (1970).

[18] Bahman Javadi, Ruppa Thulasiramy, and Rajkumar Buyya. 2011. Statistical
Modeling of Spot Instance Prices in Public Cloud Environments. In UCC.

[19] Q. Jia, Z. Shen, W. Song, R. van Renesse, and H. Weatherspoon. 2016. Smart Spot
Instances for the Supercloud. In CrossCloud.

[20] S&P Dow Jones. 2014. Index Mathematics Methodology. (2014).
[21] Cinar Kilcioglu, Justin Rao, Aadharsh Kannan, and Preston McAfee. 2017. Usage

Patterns and the Economics of the Public Cloud. In WWW.
[22] Frederic Lardinois. 2016. Spotinst, which helps you buy AWS spot instances,

raises $2M Series A. TechCrunch. (March 8th 2016).
[23] Jordan Novet. 2015. Amazon pays $20M-$50M for ClusterK, the startup that can

run apps on AWS at 10% of the regular price. (April 29th 2015).
[24] Bureau of Labor Statistics. 2015. The Consumer Price Index. https://www.bls.

gov/opub/hom/pdf/homch17.pdf. (2015).
[25] Charles Reiss, John Wilkes, and Joseph Hellerstein. 2011. Google Cluster-usage

Traces: Format + Schema. Technical Report. Google Inc.
[26] Prateek Sharma, David Irwin, and Prashant Shenoy. 2016. How Not to Bid the

Cloud. In HotCloud.
[27] Prateek Sharma, David Irwin, and Prashant Shenoy. 2017. Portfolio-driven

Resource Management for Transient Cloud Servers. In SIGMETRICS.
[28] Prateek Sharma, Stephen Lee, Tian Guo, David Irwin, and Prashant Shenoy. 2015.

SpotCheck: Designing a Derivative IaaS Cloud on the Spot Market. In EuroSys.
[29] William Sharpe. 1994. The Sharpe Ratio. The Journal of Portfolio Management 21,

1 (1994).
[30] Supreeth Shastri and David Irwin. 2017. HotSpot: Automated Server Hopping in

Cloud Spot Markets. In SoCC.
[31] Supreeth Shastri and David Irwin. 2017. Towards Index-based Global Trading in

Cloud Spot Markets. In HotCloud.
[32] Supreeth Shastri, Amr Rizk, and David Irwin. 2016. Transient Guarantees: Maxi-

mizing the Value of Idle Cloud Capacity. In SC.
[33] Zhiming Shen, Qin Jia, Gur-Eyal Sela, Ben Rainero, Weijia Song, Robert van

Renesse, and Hakim Weatherspoon. 2016. Follow the Sun through the Clouds:
Application Migration for Geographically Shifting Workloads. In SoCC.

[34] Yang Song, Murtaza Zafer, and Kang-Won Lee. 2012. Optimal Bidding in Spot
Instance Market. In Infocom.

[35] Supreeth Subramanya, Tian Guo, Prateek Sharma, David Irwin, and Prashant
Shenoy. 2015. SpotOn: A Batch Computing Service for the Spot Market. In SoCC.

[36] Adel Toosi, Ruppa Thulasiramy, and Rajkumar Buyya. 2012. Financial Option
Market Model for Federated Cloud Environments. In UCC.

[37] Cheng Wang, Qianlin Liang, and Bhuvan Urgaonkar. 2017. An Empirical Anal-
ysis of Amazon EC2 Spot Instance Features Affecting Cost-effective Resource
Procurement. In ICPE.

[38] Josh Whitney and Delforge Pierre. 2014. Data Center Efficiency Assessment.
Technical Report. Natural Resource Defense Council.

[39] Dan Williams, Hani Jamjoom, and HakimWeatherspoon. 2012. The Xen-Blanket:
Virtualize Once, Run Everywhere. In EuroSys.

[40] Rich Wolski and John Brevik. 2016. Providing Statistical Reliability Guarantees
in the AWS Spot Tier. In HPC.

[41] Rich Wolski, John Brevik, Ryan Chard, and Kyle Chard. 2017. Probabilistic
Guarantees of Execution Duration for Amazon Spot Instances. In SC.

[42] Liang Zheng, Carlee Joe-Wong, Christopher Brinton, Chee Tan, Sangtae Ha, and
Mung Chiang. 2016. On the Viability of a Cloud Virtual Service Provider. ACM
SIGMETRICS Performance Evaluation Review 44, 1 (2016).

[43] Liang Zheng, Carlee Joe-Wong, Chee Tan, Mung Chiang, and Xinyu Wang. 2015.
How to Bid the Cloud. In SIGCOMM.

12

http://www.cmpute.io
https://aws.amazon.com/about-aws/whats-new/2017/09/announcing-improved-networking-performance-for-amazon-ec2-instances/
https://aws.amazon.com/about-aws/whats-new/2017/09/announcing-improved-networking-performance-for-amazon-ec2-instances/
http://linuxcontainers.org
https://aws.amazon.com/blogs/aws/new-ec2-spot-instance-termination-notices/
https://aws.amazon.com/blogs/aws/new-ec2-spot-instance-termination-notices/
https://aws.amazon.com/blogs/aws/experiment-that-discovered-the-higgs-boson-uses-aws-to-probe-nature/
https://aws.amazon.com/blogs/aws/experiment-that-discovered-the-higgs-boson-uses-aws-to-probe-nature/
https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/
https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes/
https://www.bls.gov/opub/hom/pdf/homch17.pdf
https://www.bls.gov/opub/hom/pdf/homch17.pdf

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Market and Application Characteristics
	2.2 Market Properties from First Principles
	2.3 Market Indices

	3 Cloud Index
	3.1 Methodology
	3.2 EC2 Spot Markets

	4 System Design
	4.1 Index Tracking by Server Hopping
	4.2 Properties of Tracking-by-Hopping
	4.3 Server Selection Policies

	5 Implementation
	5.1 HotSpot Overview
	5.2 Extending HotSpot

	6 Evaluation
	6.1 Prototype Experiments
	6.2 Simulation Experiments

	7 Related Work
	8 Discussion and Conclusion
	References

